Morphological and Molecular Descriptors of the Developmental Cycle of Babesia divergens Parasites in Human Erythrocytes
نویسندگان
چکیده
Human babesiosis, especially caused by the cattle derived Babesia divergens parasite, is on the increase, resulting in renewed attentiveness to this potentially life threatening emerging zoonotic disease. The molecular mechanisms underlying the pathophysiology and intra-erythrocytic development of these parasites are poorly understood. This impedes concerted efforts aimed at the discovery of novel anti-babesiacidal agents. By applying sensitive cell biological and molecular functional genomics tools, we describe the intra-erythrocytic development cycle of B. divergens parasites from immature, mono-nucleated ring forms to bi-nucleated paired piriforms and ultimately multi-nucleated tetrads that characterizes zoonotic Babesia spp. This is further correlated for the first time to nuclear content increases during intra-erythrocytic development progression, providing insight into the part of the life cycle that occurs during human infection. High-content temporal evaluation elucidated the contribution of the different stages to life cycle progression. Moreover, molecular descriptors indicate that B. divergens parasites employ physiological adaptation to in vitro cultivation. Additionally, differential expression is observed as the parasite equilibrates its developmental stages during its life cycle. Together, this information provides the first temporal evaluation of the functional transcriptome of B. divergens parasites, information that could be useful in identifying biological processes essential to parasite survival for future anti-babesiacidal discoveries.
منابع مشابه
Babesia divergens and Plasmodium falciparum use common receptors, glycophorins A and B, to invade the human red blood cell.
Babesiosis has long been recognized as an economically important disease of cattle, but only in the last 30 years has Babesia been recognized as an important pathogen in humans. Invasion of erythrocytes is an integral part of the Babesia life cycle. However, very little information is available on the molecules involved in this process, in contrast to another hemoparasite, Plasmodium falciparum...
متن کاملThe Effect of Babesia divergens Infection on the Spleen of Mongolian Gerbils
Babesiosis is caused by intraerythrocytic protozoan parasites transmitted by ticks and affects a wide range of domestic and wild animals and occasionally humans. The current study aimed to investigate the effect of B. divergens infected erythrocytes on spleen histopathology, cell cycle alteration, and the presence of oxidative stress. Mongolian gerbils were challenged with 5 × 10(6) Babesia di...
متن کاملValidation of BdCCp2 as a marker for Babesia divergens sexual stages in ticks.
Babesiosis is a tick-transmitted disease of mammalian hosts, caused by the intraerythrocytic protozoan parasites of the genus Babesia. Transmission of Babesia parasites from the vertebrate host to the tick is mediated by sexual stages, the gametocytes which are the only intraerythrocytic stages that survive and develop inside the vector. Very few data are available concerning these parasite sta...
متن کاملPotent antihematozoan activity of novel bisthiazolium drug T16: evidence for inhibition of phosphatidylcholine metabolism in erythrocytes infected with Babesia and Plasmodium spp.
A leading bisthiazolium drug, T16, designed to mimic choline, was shown to exert potent antibabesial activity, with 50% inhibitory concentrations of 28 and 7 nM against Babesia divergens and B. canis, respectively. T16 accumulated inside Babesia-infected erythrocytes (cellular accumulation ratio, >60) by a saturable process with an apparent K(m) of 0.65 microM. Subcellular fractionation of Babe...
متن کاملThe invasion process of bovine erythrocyte by Babesia divergens: knowledge from an in vitro assay
Babesia divergens is a tick-transmitted apicomplexan parasite for which asexual multiplication in its vertebrate hosts is restricted to erythrocytes. Current knowledge of invasion of these target cells is limited. An efficient in vitro invasion assay was set up to gain access to this information. Parasites prepared from infected RBC, lysed by electroporation, and mixed with bovine RBC in a sele...
متن کامل